На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Спутник

515 951 подписчик

Свежие комментарии

  • елена куприянова
    ПереводчиковИнгвар Коротков: ...
  • Геннадий Ушаков
    Очень сомнительное суждение. У армян с демографией гораздо лучше чем у русских, к сожалению.Семен Багдасаров:...
  • Владимир Соловьев
    Прошло время и "верхи" там опять "заэлителись"Ингвар Коротков: ...

Российские материаловеды установили рекорд магнитотвердости «обычных» ферритовых магнитов

Материаловеды из МГУ установили абсолютный рекорд коэрцитивной силы ферритовых магнитов (на основе оксида железа), превзойдя предыдущее рекордное значение сразу на 25 процентов. Материал был создан на основе гексаферрита стронция, который широко применяется в качестве материала постоянных магнитов компактных электродвигателей и при изготовлении магнитных носителей данных. Гигантские значения коэрцитивной силы в 40 килоэрстед открывают новые применения в области беспроводной передачи данных за счет больших частот ферромагнитного резонанса, близких к терагерцовому диапазону. Ключом к созданию рекордного материала стала новая методика замещения части атомов железа в структуре на атомы алюминия. Исследование опубликовано в журнале Materials Today. Магнетизм материалов — это чисто квантовое явление, возникающее благодаря наличию у электронов магнитного момента — спина. Если электроны крепко связаны с конкретным атомом вещества, то можно говорить о том, что атомы обладают магнитным моментом, который определяется суммой магнитных моментов электронов. То есть каждый атом такого материала выступает в роли маленького магнита (если, конечно, сумма магнитных моментов электронов не оказывается равна нулю). В типичных ферромагнетиках спины большинства магнитных атомов оказываются сонаправлены за счет межатомных обменных взаимодействий. Тогда и у макроскопического фрагмента материала возникает магнитный момент, называемый иначе намагниченностью. За счет этого материал способен втягиваться или отталкиваться от магнитного поля — так магниты притягиваются или отталкиваются друг от друга. Такие материалы можно поделить на два больших класса — магнитомягкие и магнитотвердые. Магнитомягкие материалы легко меняют направление спинов атомов, из которых они состоят, а магнитотвердые материалы — наоборот, сохраняют свою намагниченность даже рядом с очень сильными магнитами. Магнитное поле, которое нужно приложить для того, чтобы изменить намагниченность фрагмента материала на противоположную (поменять местами северный и южный полюс постоянного магнита) называют коэрцитивной силой. Для магнитомягких ферритов эта величина не превышает 500 напряженностей магнитного поля Земли (100 эрстед). Из них, к примеру, делают сердечники для трансформаторов. Магнитотвердые материалы применяются в постоянных магнитах (например, в магнитах на холодильнике или в ветрогенераторах). Для магнитотвердых материалов, разработанных группой Льва Трусова, коэрцитивная сила составляет 40 килоэрстед или 80 тысяч полей Земли. Коэрцитивная сила возникает из-за того, что в некоторых случаях у магнитного атома в кристаллической решетке есть «удобные» направления намагниченности — легкие оси или плоскости. У слоистых гексаферритов, подобных SrFe 12 O 19 , это направление — ось, перпендикулярная плоскости слоев. Само значение коэрцитивной силы связано с тем, насколько более «удобной» является легкая ось по сравнению с перпендикулярным ей направлением. Чем больше удобство, тем более сильное поле нужно приложить, чтобы вынудить северный и южный полюс магнита поменяться местами. «Удобство» во многом определяется ближайшими соседями атома по кристаллической решетке. Пористость прекурсора обеспечила материалу небольшой размер зерна — порядка 200–700 нанометров. Это важно, потому что в такой ситуации направление спинов атомов в каждом отдельном зерне одинаково — частица ведет себя как один равномерно намагниченный магнит. Такие частицы называют однодоменными. С ростом размера частица «разбивается» на домены и коэрцитивная сила материала падает. Коэрцитивную силу удалось дополнительно увеличить за счет создания ориентированной пленки из частиц гексаферрита — до 40 килоэрстед. Кроме того, ученые определили положение пика ферромагнитного резонанса — подобные магнитные материалы поглощают электромагнитное излучение, частота которого совпадает с частотой прецессии магнитного момента атомов. Оказывается, новый материал поглощает излучение с частотой 250 гигагерц. Это, в теории, позволит создать устройства для беспроводных сетей, работающих на частотах в десятки раз больших, чем современные роутеры и на порядок увеличить скорость передачи информации. К примеру, на частотах от 30 до 300 гигагерц будет работать новый стандарт связи 5G. Предыдущим обладателем рекордной коэрцитивной силы среди магнитов, не содержащих редкоземельные металлы, был эпсилон оксид железа, частично замещенный родием, синтезированный группой профессора Окоси (ε-Fe 2 O 3 ). Величина коэрцитивной силы у порошков материала составляла 27 килоэрстед. Но методика синтеза эпсилон оксида железа чрезвычайно сложна и ее практически невозможно масштабировать на значимые количества. Абсолютными рекордсменами по магнитным свойствам остаются магнитные материалы на основе редкоземельных металлов — классические неодимовые (Nd 2 Fe 14 B) и самариевые (SmCo 5 ) магниты. Их коэрцитивная сила может достигать 52,7 килоэрстед, при этом их намагниченность насыщения на порядок выше, чем у полученного гексаферрита. Из-за этого ферритные материалы уступают на материалам на основе редкоземельных элементов по запасаемой магнитной энергии на грамм вещества. С другой стороны, ферритные материалы гораздо устойчивее к коррозии и гораздо дешевле. Владимир Королёв

 

Ссылка на первоисточник

Картина дня

наверх