Научные сотрудники Новосибирского государственного технического университета работают над созданием быстрообучаемой нейросети. Она будет устойчива к ошибкам и снизит затраты на обработку данных. По словам декана факультета прикладной математики и информатики НГТУ Владимира Тимофеева, учёные применят робастный подход.
Он выявляет грубые ошибки и снижает их влияние на работу нейросети. Ранее на потрале Om1.ru: Новосибирские студенты воссоздали виртуальную копию НГТУ в Minecraft В отличие от традиционных методов, робастный подход обеспечит устойчивый алгоритм обучения сети и точность её работы с реальными данными. «Технология предлагается впервые. В рамках исследований будут разработаны принципиально новые нейронные сети, свойства которых ещё только предстоит изучить. Должно сократиться время на обучение нейронной сети (по сравнению с традиционным подходом). Архитектура сети при этом будет достаточно простой, а затраты на предобработку данных — минимальными», — рассказал Владимир Тимофеев (цит. по: ТАСС). Полученные нейросети будут использовать для классификации текстовых данных, где нужны нетипичные алгоритмы. Читайте также на портале Om1.ru: Сотрудники НГТУ воссоздали истребитель «Чайка» .......
Свежие комментарии